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ABSTRACT
Entity alignment associates entities in different knowledge graphs
if they are semantically same, and has been successfully used in the
knowledge graph construction and connection. Most of the recent
solutions for entity alignment are based on knowledge graph em-
bedding, which maps knowledge entities in a low-dimension space
where entities are connected with the guidance of prior aligned en-
tity pairs. The study in this paper focuses on two important issues
that limit the accuracy of current entity alignment solutions: 1) la-
beled data of priorly aligned entity pairs are difficult and expensive
to acquire, whereas abundant of unlabeled data are not used; and
2) knowledge graph embedding is affected by entity’s degree differ-
ence, which brings challenges to align high frequent and low fre-
quent entities. We propose a semi-supervised entity alignment
method (SEA) to leverage both labeled entities and the abundant
unlabeled entity information for the alignment. Furthermore, we
improve the knowledge graph embedding with awareness of
the degree difference by performing the adversarial training. To
evaluate our proposed model, we conduct extensive experiments
on real-world datasets. The experimental results show that our
model consistently outperforms the state-of-the-art methods with
significant improvement on alignment accuracy.
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1 INTRODUCTION
Knowledge graphs have been constructed and widely applied to
organize and represent the knowledge of different domains, in-
cluding the most popular ones such as Freebase [1], YAGO [27]
and DBpedia [17]. Even in the same domain, knowledge graphs
(KG) are generated by different methods in different languages.
To comprehensively represent the knowledge in one domain, it is
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thus essential to connect multiple knowledge graphs in same do-
main. More specifically, entities in different knowledge graphs are
aligned if they are semantically same (as known as entity alignment
problem).

Given two knowledge graphswith labeled entities that are known
to be same in semantics, existing entity alignment approaches need
human-involved feature design [20] or extra resources [16, 22, 27],
such as information of the entity and the relation, as the training
set, to supervise the learning process of entity alignment. Most
of these methods require a sufficient number of labeled entities
to generalize well in downstream applications. However, getting
labeled entities is difficult and expensive. The number of accessible
prior entity is usually a small proportion of a whole knowledge
graph [5, 29]. ITransE [41], IPTransE [41], BootEA [29] and KDCoE
[4] tried to propose new aligned pairs of entities as training data
iteratively during training process. However, the focus is on how
to acquire more aligned entities, leaving the abundant unaligned
entities without consideration. Therefore, this paper targets on de-
signing semi-supervised entity alignment model, which learns
from both labeled and unlabeled entities. The underlying distri-
bution of abundant unaligned entities will help on mitigating the
risk of generalization errors caused by limited amount of aligned
entities [42].

Recently, knowledge graph embedding methods, e.g., TransE [3]
and PTransE [18] show significant improvement on entity align-
ment. For example, MtransE [5] encodes entities and relations of
each language in a separated embedding space, and learns transi-
tions tomap each embedding vector to its cross-lingual counterparts
in other spaces. ITransE [41] and IPTransE [41] were proposed to
encode both entities and relations of different KGs into a unified
low-dimensional space jointly and iteratively. JAPE [28], KDCoE
[4], and Graph Convolutional Network-based approach [34] all
jointly model structure and attribute information of knowledge
graphs. Our work also takes advantage of embedding methods
for building a semi-supervised entity alignment model. However,
rather than directly using existing embedding methods, we address
an important issue in the embedding process, which is caused by
the degree difference of entities in different knowledge graphs.
This phenomenon is demonstrated in Figure 1.

Entities in KGs have different degrees, i.e., popular entities are
more connected with other concepts than rare entities. As pointed
in recent study of natural language processing [7, 21] and machine
translation [24, 25], word embedding methods encode more fre-
quency information than semantic information of words in the
resulted low-dimension space. We also investigate and find the
same problem in knowledge graph embedding. Our findings verify
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Figure 1: Illustration of the impact of entity’s degree differ-
ence on embedding and alignment results. (a): embedding
of (only entities in) a KG in English, where "Matt Damon"
and "Actor" are both popular (with high degree) and thus
mapped close in blue. (b): embedding of a KG in French,
where "Acteur" is more popular (in blue) than "Matt Damon"
(in yellow). (c): alignment of English KG and French KG
("Actor" with "Acteur", and "USA" with "Etats-Unis"), which
shows that "Matt Damon" in French is far from the "Matt
Damon" in English, even they are actually the same entity.

that entities with similar degree tend to be aggregated into a same
region in the embedding space.

This deficiency of embeddingmethods brings challenges to entity
alignment problem. Figure 1 shows a toy example of the problem,
when aligning "Matt Damon" in English and French KGs. "Matt
Damon" is a very popular name in English KG, while "Matt Damon"
in French has fewer records. Embedding results of English KG
show "Matt Damon" is close to other popular entities like "Actor"
(in color blue in Figure 1 (a)), while the results of French KG (in
Figure 1 (b)) have "Matt Damon" in yellow region that is distant
to popular entity "Acteur" in blue region. By aligning "Actor" in
English and "Acteur" in French, "USA" in English and " Etats-Unis"
in French, the embedding space of French KG can be transformed to
the embedding space of English KG (e.g., with linear transformation
W). The alignment is illustrated in Figure 1 (c)), where we can see
that "Matt Damon" in French is far from the "Matt Damon" in
English, even they are actually the same entity.

To tackle the above challenges, we propose a semi-supervised
entity alignment framework called SEA, which takes advantages
of both aligned with unaligned entities, which are represented in
low-dimension space by knowledge graph embedding with aware-
ness of the degree difference. In particular, the impact of degree
difference is mitigated by an adversarial training, which prevents
entities with similar degree from being aggregated into the same
region in the embedding space during training. We also design a
cycle-consistency based translation loss using the unaligned enti-
ties to reduce the search space when learning the mappings. Thus,
the learned mappings can better align the entity in one knowledge
graph to the corresponding entity in another knowledge graph.

Our main contributions in this work are summarized as follows:
• We propose to solve entity alignment in a semi-supervised
way, not only using the given aligned entity, but also incor-
porating the unaligned entity to enhance the performance.

• We indicate the impact of entity’s degree difference on em-
bedding of knowledge graph, and address the problem under
the adversarial training framework.

• We conduct extensive experiments on four real-world datasets
to evaluate the proposed SEA model for the task of entity
alignment. The results demonstrate its advantages over the
state-of-the-art methods, with significant improvement on
several datasets.

The rest of the paper is organized as follows. We discuss the related
works in Section 2. The proposed method is described in Section
3 and followed by the experimental results in Section 4. Finally
Section 5 concludes the whole paper.

2 RELATEDWORK
2.1 KG Embedding
Knowledge graph (KG) embedding has became an important tool
for knowledge graph analysis and semantic information modeling
tasks with the fast growth of large-scale knowledge graphs. The KG
embedding approaches can be roughly categorized into two groups:
translational distance models and semantic matching models [33].

TransE [3] is themost representative translational distancemodel.
It considers a relation as the translation from its head entity to its
tail entity and represents both entities and relations as vectors into
a same low dimensional vector space. TransE [3] characterizes a
triple (h, r , t) following a common assumption h + r ≈ t, where h
and t are the representations of h and t , r is the representation of r .
TransE has shown its feasibility for KG modeling, and it has been
improved by many following studies, such as TransH [35], TransR
[19], TransD [12], TranSparse [13], and PTransE [18].

Semantic matching models use the similarity-based scoring func-
tions instead of the distance-based scoring functions. RESCAL [23]
and Bilinear [11] model each relation as a matrix and associate each
entity with a vector. DistMult [36] restricts the relation matrices
to diagonal matrices. And HolE combines RESCAL [23] and Dist-
Mult [36] to get expressive and efficiency model. ComplEx [31]
introduces complex-valued embeddings for better asymmetric rela-
tions modeling. Several works in [2, 26] conduct semantic matching
using neural network.

The effect of word’s frequency difference on embedding results
has been recognized in [7, 21] and [24, 25], but the effect of entity’s
degree difference on embedding results has not been explored. In
this paper, we address the effect of entity’s degree on the embedding
and propose to improve the most widely-used TransE method by
mitigating the effect of entity’s degree difference. The obtained KG
embedding are used for improving entity alignment, especially for
the rare and popular entities.

2.2 Entity Alignment
Some forerunners proposed to address the entity alignment prob-
lem using crowdsourcing [17, 32] and well-designed hand-crafted
features [20]. However, the approaches suffer from the requirement
of heavy human efforts, and is thus costly and labor-expensive.
Many works leverage the extra resources, such as OWL properties
[9], entity descriptions [37], information of entities and relations
[16, 22, 27]. Such methods are complex and usually limited by the
availability of the extra information about a knowledge graph.

In recent study, KG embedding-based approaches become the
most popular solution for entity alignment. MTransE [5] is the
representative work which encodes entities and relations of each



language in a separated embedding space, and learns transitions
to map each embedding vector to its cross-lingual counterparts
in the other space. Then ITransE [41] and IPTransE [41] are pro-
posed to encode both entities and relations of different KGs into a
unified low-dimensional space jointly by an iterative and param-
eter sharing method. BootEA [29] addresses the lack of labeled
data by bootstrapping strategy and tries to reduce error accumula-
tion during iterations by employing an alignment editing method.
It also proposes an improved KG embedding approach with the
limit-based loss and truncated uniform negative sampling. BootEA
achieves a significant performance improvement. Further, several
works, such as JAPE [28] and KDCoE [4], consider to jointly model
the structure and attributes information of KGs. Recently, a Graph
Convolutional Network-based entity alignment approach [34] uses
GCNs to embed entities of each language into a unified vector space
combining structural and attributes information.

All the methods above focus on the utilization of aligned entities,
including BootEA [29], which tried iteratively enlarge the labeled
entity pairs based on the bootstrapping strategy. The abundant
unaligned entities that have rich content information are not used
in the alignment process. Therefore, we propose a semi-supervised
framework to align entities in different KGs based on both labeled
and unlabeled data.

3 METHODOLOGY
In this section, we firstly introduce the notation and problem defi-
nition, then describe the proposed method in detail.

3.1 Notation and Problem Definition
A knowledge graph can be noted as G = (E,R,T ), where E is the
set of entities, R is the set of relations, and T is the set of triples,
each of which is a triple (h, r , t), including the head entity h, the
relation r and the tail entity t . By using KG embedding, each triple
can be presented as (h, r, t), in which boldfaced h, r, and t represent
the embedding vectors of head h, relation r , and tail t , respectively.

Let G1 = (E1,R1,T1) and G2 = (E2,R2,T2) be two KGs in dif-
ferent languages. ASL =

{
(ei1 , ei2 )|ei1 ∈ EL1 , ei2 ∈ EL2

}
is a set of

labeled entity pairs that are same in semantics, e.g., ei1 inG1 shares
same meaning with its counterpart ei2 in G2. Entity alignment is
a task to find and align the remaining semantically same entities
{ei1 ∈ EU1 } and {ei2 ∈ EU2 } where EU1 = E1 \ EL1 and EU2 = E2 \ EL2 .
Unlike the previous study which builds alignment model based on
ASL only, our approach SEA builds the semi-supervised alignment
model based on both ASL and EU1 and EU2 .

The framework of our proposedmethod SEA is shown in Figure 2.
SEA has twomodules, knowledge graph embedding with awareness
of degree difference of entities (called degree-aware KGE for short),
and semi-supervised entity alignment. We introduce them in details
next.

3.2 Degree-Aware Knowledge Graph
Embedding

Like the previous works in [4, 5, 41], we build our degree-aware
KG embedding model by following TransE [3], which is the most
representative translational distance model. It is worth mentioning
that our ideas of mitigating the effect of entity’s degree difference

on embedding can also be applied to other KG embedding methods,
which is not the focus of this work.

When applying TransE on both knowledge graphsG1 andG2, en-
tities and relations are projected into the same low-dimensional vec-
tor space by encoding the triples (h, r , t), and making h+r ≈ twhen
(h, r , t) holds. Specifically, the embeddings of relations can translate
the embeddings of head entities to tail entities. The margin-based
ranking object function minimized by TransE over a knowledge
graph Gi is defined as:

LGi (Gi ;φi ,θ ie ) =
∑

(h,r,t )∈Ti

Lt (h, r , t) (1)

where φi refers to the model parameters for Gi , θ ie presents the
learned embedding from Gi , and Lt (h, r , t) is the object function
for a triple (h, r , t):

Lt (h, r , t) =
∑

(h′,r,t ′)∈T ′
(h,r ,t )

[
γ + E(h, r , t) − E(h′, r , t ′)

]
+ (2)

where [x]+ = max {0,x} denotes the positive part of x ,γ is a margin
hyper-parameter which is greater than 0, and E(h, r , t) indicates
the energy function:

E(h, r , t) = ∥h + r − t∥2 (3)

and T ′ denotes the negative sample set for the triple (h, r , t):

T ′
(h,r,t ) =

{
(h′, r , t)|h′ ∈ E

}
∪
{
(h, r , t ′)|t ′ ∈ E

}
(4)

where (h′, r , t) and (h, r , t ′) are the Bernoulli negative-sampled
triples by replacing h or t in (h, r , t). Finally, we can get the ob-
ject function for both knowledge graphs G1 and G2:

LG = LG1 + LG2 (5)

Next, we present the degree-aware KGE method to address the
impact of entity’s degree difference on the knowledge graph embed-
ding. As discussed before, the entities with similar degree values
tend to be aggregated into the same regions in the embedding space.
However, for entity alignment, entities with similar semantic in-
formation are expected to be closer without the impact of entities’
degree. Thus, we design the degree-aware KGE model by training
the knowledge graph embeddings in an adversarial framework,
inspired by Generative Adversarial Network (GAN) [8]. Given a
graphGi , we design two discriminators to classify the entities with
different degrees in Gi , and the degree-aware KGE model can be
regarded as a generator which produces "Good" embeddings to fool
the discriminators. We catalog the degree of entities into three lev-
els, high degree, normal degree, and low degree. One discriminator
D1 categorizes the entities with high degree and normal degree,
while the other discriminator D2 is in charge of classifying the
entities with low degree and normal degree. The expectation is:
the learned knowledge graph embeddings not only minimize the
margin-based ranking loss function defined above, but also can
fool the two discriminators. The impact of degree is thus removed
from the learned embeddings when the two discriminators cannot
distinguish entities according to the information of degree.

Let D1 be the first discriminator with parameters ϕi1, and D2 be
the other discriminator with parameter ϕi2. The inputs of D1 are
the entities from Eihd and Eind , which are entities with high degree
and normal degree in graph Gi . The inputs of D2 are the entities



Figure 2: Framework of SEA for semi-supervised entity alignment. (a) shows two knowledge graphsG1 andG2 with three pairs
of aligned entities. (b) presents the learned embeddings via the degree-aware KG embedding approach. (c) demonstrates the
embedding spaces after transferringG1 toG2 andG2 toG1 usingM1 andM2 learned by the pairs of aligned entities. The entities
within small circles are close due to the supervised alignment guidance. (d) shows the cycle consistency of entities after being
transferred back the original embedding spaces. The transferred embedding of each entity should be close to the original
embedding of this entity in the original embeddings spaces (as indicated in the small circles).

from Eild and Eind , which are entities with low degree and normal
degree in graph Gi . Both discriminators are learned to minimize
loss functions:

LD1 =
1���Eihd ���

∑
e ∈Eihd

logD1(θ
i
e ,ϕ

i
1) +

1���Eind ���
∑

e ∈Eind

log(1 − D1(θ
i
e ,ϕ

i
1))

(6)

LD2 =
1���Eild ���

∑
e ∈Eild

logD2(θ
i
e ,ϕ

i
2) +

1���Eind ���
∑

e ∈Eind

log(1 − D2(θ
i
e ,ϕ

i
2))

(7)
Taking also the objective function Eq. (1), the over all minimax

object function for learning embeddings of Gi will be:

min
φ i ,θ ie

max
ϕi1,ϕ

i
2

LGi (Gi ;φi ,θ ie )−

αLD1 (E
i
hd ,E

i
nd ;ϕ

i
1,θ

i
e ) − αLD2 (E

i
ld ,E

i
nd ;ϕ

i
2,θ

i
e )

(8)

where α is a tradeoff parameter. In the adversarial training, LGi is
minimized w.r.t. φi and θ ie to produce "Good" embeddings to fool
D1 and D2. Meanwhile, D1 and D2 are trained w.r.t. ϕi1 and ϕ

i
2 to

distinguish entities with different degree levels. Following the iter-
ative training process of GAN [8], we first train the KG embedding
model with D1 and D2 fixed, and then train the discriminators with
KG embedding model fixed. The same process will be applied toG1
and G2.

3.3 Semi-Supervised Entity Alignment
After obtaining entity embeddings of graph G1 and G2, labeled
entities are aligned to minimize∑

(ei ,ej )∈ASL

M1θ1ei − θ2ej


2
+

M2θ2ej − θ1ei


2 (9)

where M1 and M2 are the d × d translation matrices, d is the di-
mension of embeddings of entities. Note that our model jointly
learns the translation of embeddings of entities in both directions
for each knowledge graph. That is to say, M1 is learned to transfer
the embeddings of G1 into the embeddings space of G2, andM2 is
to transfer the embeddings of G2 into the embeddings space of G1.
Due to the limited labeled set, the learned M1 and M2 cannot be
generalized well to all entities in the two knowledge graphs.

To improve generalizability and incorporate unlabeled entities of
two knowledge graphs in the alignment process, we define a cycled
consistent loss, inspired by the work of CycleGAN [38] in computer
vision field, where transitivity is used to regularize structured data
[38] to do visual tracking [14, 30], 3D shape matching [10], co-
segmentation [39, 40] and depth estimation [6]. TranslationM1 and
M2 should be able to
1) bring ei in G1 back after mapping cycle ei → ej → êi , i.e., the
distance dд1 between ei and êi should be small;
2) bring bring ej back after mapping cycle ej → ei → êj , i.e., the
distance dд2 between ej and êj should be small.



Formally, the cycle process is:

θ1ei → M1θ1ei → M2M1θ1ei (10)

θ2ej → M2θ2ej → M1M2θ2ej (11)

Combing the alignment loss function in Eq. (9) and the cycle consis-
tency restriction, we define the loss function of our semi-supervised
entity alignment as:

LSEA(M1,M2) = α1
∑

(ei ,ej )∈ASL

M1θ1ei − θ2ej


2
+

M2θ2ej − θ1ei


2

+
M2M1θ1ei − θ1ei


1 +

M1M2θ2ej − θ2ej


1

+ α2
∑

ei ∈EU1

M2M1θ1ei − θ1ei

1 + α2

∑
ej ∈EU2

M1M2θ2ej − θ2ej


1

(12)
where α1 and α2 are the tradeoff parameters for balancing the loss
between labeled and unlabeled data.

We initialize the embeddings of KGs by drawing from a Gauss-
ian initialization, and initialize the matrices by using orthogonal
initialization. We use SGD as our optimizer, and normalize all em-
beddings by L2 norm. The trade-off parameter α , α1 and α2 are
set by grid search. Once M1, M2 are learned, an entity e in G1 can
be aligned by first transferring to G2 as M1θe and then selecting
the most similar entity in G2. Similarly, an entity e in G2 can be
aligned by first transferring to G1 asM2θe and then selecting the
most similar entity in G1.

4 EXPERIMENTS
In this section, we conduct experiments on several real-world
datasets with different sizes, and evaluate our proposed method for
entity alignment.

4.1 Datasets and Baselines
To comprehensively evaluate the effectiveness of our SEA method,
we use two trilingual knowledge graph datasets from WK31 pro-
vided in [5]. WK31 datasets consist of English(En), French(Fr), and
German(De) knowledge graphs which are extracted from Person
domain of DBpedia’s with known aligned entities as ground truth.
WK31 includes two datasets with different sizes, which are WK31-
15K and WK31-120K. The statistics of the datasets are given in
Table 2 and Table 3. For datasets WK31-15K and WK31-120K, we
extract the aligned entities from aligned triples.

To verify the effectiveness of our proposed method, we include
the following methods for performance comparison, including:
MTransE [5], ITransE [41], JAPE [28],GCN-basedmethod[34],
BootEA[29], SEA w/o DA (a variant of the proposed SEA, by re-
moving the degree-aware KGE part), and SEA.

4.2 Evaluation Metrics and Parameter Settings
We adopt two popular metrics, Hits@k and MRR for evaluating
entity alignment results. Hits@k measures the proportion of cor-
rectly aligned entities ranked in the top k proposed candidates. In
our work, we report Hits@1, Hits@5 and Hits@10. Both metrics
are preferred to be higher to present better performance.

Table 1: Statistics of the WK31 dataset

dataset #Triple #Entity #Relation

WK31-15K En-Fr En: 203,502
Fr: 170,605

En: 15,170
Fr: 15,393

En: 2,228
Fr: 2,422

WK31-15K En-De En: 203,502
De: 145,616

En: 15,127
De: 14,603

En: 1,841
De: 596

WK31-120K En-Fr En: 1,376,011
Fr: 767,750

En: 119,749
Fr: 118,591

En:3,109
Fr:2,336

WK31-120K En-De En: 1,376,011
De: 391,108

En: 67,650
De: 61,942

En: 2,393
De: 861

Table 2: Number of aligned entity in different datasets.

Dataset En-Fr Fr-En En-De De-En

WK31-15K 10,108 10,164 11,594 11,445

WK31-120K 117,947 117,212 55,640 54,287

For all methods compared in 4.3, we set the dimension of knowl-
edge graph embeddings d = 100 on all datasets. We find the optimal
parameter settings for all baseline methods.

For our SEA method, we set that the high degree entities are
those with top 20% degree values, while the low degree entities are
those with bottom 20% degree values, and the rest are the normal
degree entities. we search the margin γ among {0.5, 1, 1.5, 2}, and
the tradeoff parameter α among {0.1, 0.3, 0.5, 0.7, 1.0}, α1 and α2
among {1, 2.5, 5, 7.5} and {0.05, 0.15, 0.25, 0.35, 0.45}, respectively.
The best configuration is γ = 0.5, α = 0.5, α1 = 2.5 and α2 = 0.25.
Discriminators are set as two-layers MLPs with 500 hidden units.
We use Adam [15] to optimize the object function. Meanwhile, we
use L2 norm to avoid potential over-fitting.

We randomly sample 30% of the aligned entities as the training
set, and the rest aligned entities for testing. Each evaluation is
repeated 5 times and we report the averaged Hits@k andMRR.

4.3 Performance Evaluation Results
The evaluation results are presented in Table 3-4. The best results
are shown in bold among the group of methods, along with the
percentage of improvement when comparing SEA without degree-
aware (SEA w/o DA) and SEA with the best baseline methods. From
these evaluation results, we have the following findings:

(1) Our proposed SEA consistently outperforms the base-
line methods on all datasets under different evaluation met-
rics. This observation verifies that our proposed model effectively
unifies the labeled and unlabeled data for improving entity align-
ment accuracy. In particular, our method achieves significant im-
provement when matching the top-1 ranked entity (Hits@1 is im-
proved by more than 10%, or even 30-56%). Especially on the largest
dataset WK31-120k, our SEA method has improvements on all met-
rics from 18% to 56%. BootEA is often the second best baseline due
to the effective bootstrapping strategy for selecting labeled data.
However, on the largest dataset WK31-120k, it sometimes performs
worse thanMTransE, mainly because it is difficult for bootstrapping
to propose effective entities to label in a large dataset. In addition,
bootEA need more time to calculate the similarity between each



Table 3: Entity alignment results of different methods on WK31-15K dataset. The best results are in bold, along with the
percentage of improvement when comparing SEA w/o DA and SEA with the best baseline methods.

Language En-Fr Fr-En
Metric Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR
MtransE 16.77 21.64 25.35 0.198 19.85 31.27 38.21 0.261
ITransE 18.21 24.34 27.41 0.214 18.61 33.64 36.28 0.248
JAPE 15.68 23.45 28.69 0.208 16.22 28.93 34.71 0.219
GCN 17.24 27.29 31.16 0.220 17.58 30.82 36.21 0.237

BootEA 29.72 52.92 61.19 0.395 30.77 55.44 63.67 0.428
SEA w/o DA 36.78 54.89 62.37 0.454 38.61 58.69 62.51 0.481

SEA 37.28 55.91 63.56 0.468 39.76 59.32 66.31 0.489
Improvement % 23.75 / 25.47 3.72 / 5.65 1.93 / 3.87 14.93 / 18.48 25.48 / 29.22 5.86/ 7.00 -1.82 / 4.14 12.38 / 14.25

Language En-De De-En
Metric Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR
MtransE 6.170 8.48 10.39 0.078 4.69 6.61 7.74 0.059
ITransE 15.98 28.63 32.71 0.218 13.42 25.63 31.17 0.205
JAPE 16.85 27.32 34.74 0.226 13.92 22.15 29.68 0.189
GCN 18.25 31.30 37.26 0.248 15.70 27.53 33.31 0.217

BootEA 33.13 54.13 61.70 0.435 30.47 45.33 53.52 0.381
SEA w/o DA 37.74 54.81 65.74 0.462 32.86 46.21 53.53 0.393

SEA 38.59 55.21 64.06 0.473 32.11 47.53 55.82 0.402
Improvement % 13.91 / 16.48 1.26 / 2.01 6.55 / 3.82 6.21 / 8.74 7.84 / 5.38 1.94/ 4.85 0.19 / 4.31 3.15 / 5.51

Table 4: Entity alignment results of different methods on WK31-120K.

Language En-Fr Fr-En
Metric Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR
MtransE 21.01 22.24 22.82 0.217 21.11 23.63 25.24 0.227
ITransE 11.54 20.41 23.92 0.176 13.35 21.20 24.18 0.197
JAPE 6.98 16.10 22.74 0.127 8.64 17.85 23.38 0.134
GCN 9.32 18.62 25.48 0.146 10.81 18.22 26.39 0.153

BootEA 17.56 27.41 31.85 0.235 18.46 28.65 31.85 0.241
SEA w/o DA 26.48 34.38 38.57 0.315 27.82 35.99 39.77 0.320

SEA 28.02 35.82 39.70 0.321 28.72 36.74 41.37 0.331
Improvement % 26.04 / 33.36 25.42 / 30.68 21.10 / 24.65 34.04 / 36.59 31.78 / 36.05 25.62/ 28.23 24.87 / 29.89 32.78 / 37.34

Language En-De De-En
Metric Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR
MtransE 5.38 6.53 7.33 0.062 4.97 7.39 9.12 0.066
ITranE 7.62 15.54 19.41 0.112 6.41 12.82 15.27 0.085
JAPE 4.37 12.91 14.49 0.076 5.23 10.46 14.10 0.071
GCN 6.32 15.14 20.77 0.109 5.91 13.85 17.68 0.092

BootEA 11.57 22.08 27.75 0.179 10.32 22.11 26.36 0.169
SEA w/o DA 16.21 25.49 30.73 0.213 14.59 25.66 29.76 0.202

SEA 17.23 27.48 32.83 0.227 16.11 27.06 32.48 0.218
Improvement % 40.10 / 48.91 15.44 / 24.45 10.74 / 18.31 19.01 / 26.82 41.38 / 56.10 16.06/ 22.38 12.89 / 23.21 19.53 / 28.99

entity pair in the dataset except the training data. All the results
show that the advantage of our semi-supervised method.

(2) Our proposed degree-aware knowledge graph embed-
ding approachproduces improved entity representations, and
thus improves entity alignment results. This conclusion is drawn
from the comparison of improvement made by SEA w/o DA and
SEA. After mitigating the effect of entity’s degree difference on
embedding results, SEA can further improve the semi-supervised
results obtained by SEA w/o DA, with only few exceptions. It is
worth noting here that the aligned entities with high and low de-
gree is a small proportion of the whole aligned entity set. How
much degree-aware KE embedding can help is limited by this small
proportion of entities with high and low degree levels. Therefore,
the improvement made from SEA w/o DA to SEA is justifiable.

5 CONCLUSION
Entity alignment is an important research problem in knowledge
graph analysis and management. In this work, we propose a semi-
supervised method with degree-aware KG embedding to do the

entity alignment. We design a cycle-consistency based translation
loss to leverage the unaligned entity to enhance the ability of align-
ment instead of only using labeled aligned entities. In addition, we
observe that the entity degree can influence the learned embeddings
and degrade the performance of downstream application. We thus
adopt adversarial training to alleviate the problem and improve
the embedding results. We conduct experiments on four real-world
datasets. The experimental results show that our model consistently
outperforms the state-of-art methods on the entity alignment task.
Based on the success of this first attempt of semi-supervised entity
alignment, in future, we will consider the relation information in
the graph to enhance the model.
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6 APPENDIX
6.1 Analysis of the Impact of Entity’s Degree

Difference on Embedding
In this section, we investigate the impact of entity’s degree differ-
ence on the embeddings learned by knowledge graph embedding
approaches. We catalogs the degree of entities into three levels,
high degree, normal degree, and low degree. The high degree enti-
ties are those with top 20% degree values in a KG, while the low
degree entities are those with bottom 20% degree values, and the
rest are the normal degree entities. We apply the most popular KG
embedding method TransE on the evaluation datasets presented
in Section 4, and report only the embedding results from WK31-15
dataset [5], due to the space limits and the similar observations
from other datasets.

Figure 3 (a) and (b) visualize the embeddings of entities in WK31-
15 English and French, respectively, through applying Singular
Value Decomposition (SVD) to reduce the embeddings into 3-dim
space. Entities with different degree levels are shown in different
colors. We can observe that in both Figure 3 (a) and (b), entities
at the same degree level tend to be close in the mapped space.
Entities with high degree values and normal degree values are
mostly mapped in three dense regions (in red and green), while
entities with low degree values relatively more spread out around
centers (in blue) deviating from those in red and green.

Figure 3 (c) shows the transferred embeddings of French KG in
the English embedding space. The mapping function minimizes
the distance between the given aligned entities. Figure 3 (a) and (c)
generally have similar distribution patterns. However, careful com-
parison between (a) and (c) shows that entities with low and high
degree values (in blue and red) are less matchable than entities with
normal degree values (in green). Thus, Figure 3 visually illustrates
the impact of entity’s degree difference on the embeddings.

To further investigate the impact, we find the 50 nearest neigh-
bors of each entity in the embedding results, and show the distri-
bution of neighbors at different degree level in Table 5. The first
row of Table 5 shows that 91% of the nearest neighbors of entities
with high degree are the entities with high and normal degree, only
9% are entities with low degree, in both English and French KG
embedding results. For the entities with normal degree, the second
row of Table 5 shows that 74% (76%) of their neighbors are entities
also with normal degree in the English graph (French graph). Last,
the third row of Table 5 shows that the entities with low degree
have more neighbors with normal and low degrees than with high
degrees (11% and 13% in English and French graph, respectively). In
summary, a significant observation is that entities with high degree
are far from the entities with low degree in the embedding space.
Since entities with normal degree make up the largest proportion
of whole set of entity, we therefore design a model to treat entities
with normal degree as anchors and pull entities with high and low
degree close to the anchors in the embedding process. By doing
so, the impact of entity’s degree difference on embedding can be
mitigated. More details of the proposed model are given in Section
3.2. And we present the embedding results here also in Figure 3 for
an easy comparison.

Table 5: Distribution of the 50 nearest neighbors of entities
at different degree levels in embedding space of TransE (top)
and our degree-aware KG embedding model (bottom). Val-
ues in columns of %High (%Normal, %Low) are the portion
of the 50 nearest neighbors with high (normal, low) degrees.

English French
%High %Normal %Low %High %Normal %Low

High 42 49 9 51 40 9
Normal 15 74 11 12 76 12
Low 11 47 42 13 49 38

English French
%High %Normal %Low %High %Normal %Low

High 28 54 18 32 50 18
Normal 17 70 13 15 69 16
Low 18 55 27 26 52 22

Figure 3 (d) and (e) visualize the embeddings learned by our
degree-aware KG embedding method proposed in Section 3.2. Com-
pare the same set of entities represented in Figure 3 (a) and (d),
and those in Figure 3 (b) and (e), we can observe that the embed-
ding results of our model in Figure 3 (d) and (e) spread more than
those in Figure 3 (a) and (b). The influence of entity’s degree is less
severe. Moreover, we can find that the transferred embeddings of
French KG in Figure 3 (f) also show the similar distribution pat-
tern, and entities with different degree values share same regions
in the space. Also, we calculate the distribution of the 50 nearest
neighbors of entities at different degree levels in our degree-aware
KG embedding space. The results are given in the bottom part of
Table 5. We find that the proportion of entity with low degree of
nearest neighbors of the entity with high degree become 18% (it is
9% in the top part in Table 1). The overall comparison in Table 1
and Figure 3 demonstrates that our degree-aware KG embedding
method can mitigate the effect of the degree difference of entities.
Its effectiveness on improving entity alignment will be evaluated
and presented in Section 4.



(a) Embeddings of entities in English KG by TransE (b) Embeddings of entities in French KG by TransE (c) Transferred embeddings of entities in French KG

(d) Embeddings of entities in English KG by our model (e) Embeddings of entities in French KG by our model (f) Transferred embeddings of entities in French KG

Figure 3: Demonstration of the impact of entity’s degree difference on embedding, obtained by TransE and our proposed model on WK31-15
dataset. (a) and (b) visualizes the embeddings of entities in WK31-15 English and French KG, respectively. It can be observed that entities at
the same degree level tend to be close in the mapped space. (c) shows the transferred embeddings of French KG in the English embedding
space. (d) and (e) show the embeddings of the same entities in WK31-15 English and French KG obtained by our degree-aware KG embedding
model proposed in Section 3.2. (f) shows the transferred embeddings of French KG in the English embedding space. Comparison of (a) and (c)
shows that entities with low and high degree values (in blue and red) are less matchable than entities with normal degree values (in green).
Results in (d-f) show that the phenomena in (a-c) have been mitigated by our model. Figure best viewed in pdf or colored print.
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